
SAMPLE

1

Chapter 1

Introducing Microsoft
Analysis Services 2005

1.1 What is Analysis Services 2005? 1
1.2 Understanding OLAP 10
1.3 Understanding The Unified Dimensional Model 16
1.4 Analysis Services Architecture 23

1.5 Analysis Services in Action 27
1.6 Summary 34
1.7 Resources 35

Albert Einstein once said that information alone is not knowledge. This adage has never been
more relevant than in today’s information age where organizations are looking for ways to
quickly make sense of mountains of data generated every day. Only by carefully screening and
analyzing that data can an organization unlock its power and fully understand its customers, its
markets, and its business. I am not aware of an official slogan for Analysis Services but the one
that may best serve this purpose could be “Knowledge is power”.
 As its name suggests, the promise of Microsoft SQL Server Analysis Services 2005 is to
promote better data analytics by giving information workers powerful ways to analyze consistent,
timely, and reliable data. Empowered with Analysis Services, you are well positioned to solve the
perennial problem with data – that there is too much of it and finding the right information is
often difficult, if not impossible.
 This introductory chapter gives you a panoramic view of Microsoft SQL Server Analysis
Services 2005 (SSAS) and the Microsoft Business Intelligence platform. Throughout the rest of
this book, I will use the terms Analysis Services and SSAS interchangeably to refer to Microsoft
SQL Server Analysis Services 2005. In this chapter, we will discuss:

• What is SSAS?
• The services SSAS provides
• The role of SSAS in the Microsoft Business Intelligence Platform
• How SSAS unifies the relational and dimensional reporting models
• SSAS architecture
• SSAS in action hands-on lab

1.1 What is Analysis Services 2005?
The processes of collecting and analyzing information assets to derive knowledge from data are
typically referred to as Business Intelligence, or BI, for short. Simply put, SSAS can be viewed as a
sophisticated software platform for delivering business intelligence by providing rich and
efficient ways to “get out” what was “put in”. To be more specific, we can describe SSAS as a
server-based platform that provides two core services -- On-Line Analytical Processing (OLAP)
and data mining. Let’s cover these two terms in more detail.

SAMPLE

CHAPTER 1 2

Definition Microsoft Analysis Services is a server-based platform for on-line analytical processing (OLAP)
and data mining.

1.1.1 Introducing OLAP
There are two types of database-driven systems that serve orthogonal requirements. On-Line
Transactional Processing (OLTP) systems are designed for fast transactional input to support
business systems. On the other side, OLAP systems are optimized for fast data output to
support data analytics and reporting.

Let’s consider a popular BI scenario that can be implemented using the OLAP technology and
SSAS.

Fast and intuitive reporting
Suppose that your company’s CEO is asking you for a report showing last-year sales. You run an
SQL query that produces the magic number, e.g. the company made one million dollars in sales.
While this figure may be great (or not so great depending on the company situation), it is unlikely
to provide enough information to your CEO and marketing department.
 There are a myriad of questions your business users may ask you. How do the sales of this
year compare to last year? What are the top selling products? How do products sale by region,
resale channels, etc? You may opt to address some of these questions by authoring standard
reports but, at some point, this process may become counterproductive, especially when large
datasets need to be processed.
 One elegant and efficient solution is to implement an OLAP application that allows business
users to produce reports interactively, as shown in Figure 1.1. It is implemented as a .NET
Windows Form client application that leverages a “smart” OLAP browser connected to SSAS

Definition On-Line Analytical Processing (OLAP) applications are optimized for fast data querying and
reporting.

Figure 1.1 Use “smart”
OLAP browsers
connected to SSAS to
build interactive
reporting applications.

SAMPLE

INTRODUCING MICROSOFT ANALYSIS SERVICES 2005 3

2005. In this case, the browser is Microsoft Office Web Components (OWC) which is part of
the Microsoft Office suite. Empowered with this application, end users could view data from
different angles (called dimensions in the OLAP terminology) by creating dynamic views interac-
tively. Moreover, report queries will be satisfied almost instantaneously because OLAP servers
are optimized for fast retriaval.

Definition The OLAP terminology uses the term dimension to refer to an analytical perspective that can
be used to browse the data. Common examples of dimensions include Product, Customer, and Time.

In Figure 1.1, the user has decided to see sales data broken by Product by Category dimension on
rows and Time dimension on columns. The user has expanded (“drill down”) the Product by
Category dimension to see data broken further down by Product Category, Subcategory, and
Model Name. The Time dimension is also expanded to show sales figures by Calendar Year,
Semester, and Quarter levels. Data is further filtered by Country to show sales figures for United
States only.
 I dubbed this type of reporting “interactive” because with a few mouse clicks the user can
change the report to view data from different angles. For example, assuming the SSAS model
supports this, the user can opt to view the sales data by Customers on rows and Fiscal Year on
columns. Optionally, this application allows the user to save the report view to a database and
retrieve it on as-needed basis. I will show you how you can build this type of applications in
chapter 19.
 As you could see, interactive reporting is much more powerful and flexible than standard
“canned” reporting. The tradeoff is that you need to spend some extra effort to design and
implement your OLAP database in such a way that it conforms to the OLAP dimensional
model, as we will discuss in section 1.2. Don’t despair, though. SSAS definitely goes a long way
in making this endeavor easier.

SSAS as OLAP server
Can you produce interactive reports from a relational database instead of going through all the
trouble to implement an OLAP solution? Most likely the answer will be yes. For example, you
can connect OWC directly to a relational database and achieve similar reporting results. There is
really no magic that OLAP performs behind the scenes as a database engine. The same aggrega-
tion results could be achieved by just sending SQL statements. So, why should you use OLAP
and SSAS for that matter?
 To answer this question, consider the Fast Analysis of Shared Multidimensional Information
(FASMI). This test was proposed by The OLAP Report, an independent organization that
studies the OLAP technology and market (see the Resources section). It outlines five easy to
remember criteria that each OLAP server should adhere to.
 The Fast rule means that the OLAP server has to be optimized for fast (almost instantane-
ous) data retrieval. The OLAP Report suggests that most queries should be answered in five
seconds. Of course, performance depends on a variety of factors, including hardware and
software configuration, level of optimization, etc., but OLAP servers have to be FAST.
 The Analysis rule means that the OLAP calculation engines should be superior in supporting
advanced business calculations compared with RDBMS and these calculations shouldn’t mandate
the use of a professional programming language.
 Each OLAP server should also provide Shared access to data. This criterion has two aspects.
First, it mandates that every OLAP server should protect sensitive data preferably at the most

SAMPLE

CHAPTER 1 4

granular (cell) level. In addition, an OLAP server should support writeback, i.e. allowing the users
not only to read, but also to change data.
 The Multidimensional characteristic is the most important requirement. Every OLAP system
should provide a multidimensional view of data that extends beyond the two-dimensional
analysis of RDBMS. OLAP users should be able to see data from different angles called dimen-
sions, as we’ve just seen in the example shown in Figure 1.1.
 Finally, the Information criterion measures the ability of the OLAP system to store and
aggregate vast volumes of data without performance degradation. So, to sum up, the strongest
motivation factors to favor the OLAP technology instead of RDBMS for reporting is its superior
performance, user-friendly reporting model, and rich calculations. I hope that in this chapter and
throughout this book, I will convince you to consider OLAP for implementing efficient and rich
reporting solutions.

1.1.2 Introducing Data Mining
The second main service that SSAS provides is data mining. Data mining is a science in itself.
Generally speaking, data mining is concerned with the process used to predict the unknown
based on known statistical facts. Instead of asking us to look at a crystal ball, the SSAS team has
implemented sophisticated mathematical models that can analyze large volumes of data, discover
patterns and trends, and produce prediction results.

Figure 1.2 Use SSAS data
mining to discover trends in data,
such as forecasting future sales.

Typical examples where data mining can be used efficiently include sales forecasting and basket
analysis. For example, by examining the historical sale figures, data mining can answer the
following questions:

• What are the forecasted sales numbers for the next few months?
• What products may this customer buy together with the chosen product?
• What type of customers (gender, age groups, income, etc.) is likely to buy this product?

A common practical example of using data mining is shown in Figure 1.2. Imagine that your
company is selling products and the marketing department is asking you to estimate the sales in
North America for the next five months. Instead of dusting off your college math book, you
prudently decide to use SSAS. Once you build the data mining model, with a few mouse clicks
you can produce a report as the one shown in Figure 1.2. We will discuss data mining in more
detail in chapters 7 and 8.

SAMPLE

INTRODUCING MICROSOFT ANALYSIS SERVICES 2005 5

1.1.3 Overview of SSAS
Shortly after acquiring the Panorama OLAP technology in 1997, Microsoft introduced the first
release of SSAS. It shipped as an add-on to the SQL Server 7.0 and was named Microsoft OLAP
Services. The second version coincided with the SQL Server 2000 release. The product name
was changed to Analysis Services 2000 to reflect the fact that now SSAS provided not only
OLAP, but also data mining capabilities. Today, SSAS 2000 is a leading OLAP platform accord-
ing to The OLAP Report (see the Resources section). After five years of gestation effort,
Microsoft released SQL Server Analysis Services 2005 in November 2005.

SSAS editions and licensing
As its predecessors, SSAS 2005 ships as an add-on to SQL Server 2005. However, note that,
although it is bundled with SQL Server, SSAS is not necessary dependent on the SQL Server
relational engine.

Note There are some features in SSAS 2005, such as using multiple data sources in a single data source
view and proactive cache notifications, that work only when SQL Server is used as a data source.

For step-by step instructions on how to install SSAS 2005, refer to Appendix A at the end of this
book. Let’s now briefly discuss how SSAS is packaged and its licensing requirements. To address
different user needs, SQL Server 2005 is available in five editions – Express, Workgroup,
Standard, Enterprise, and Developer editions. However, SSAS is available in the last three
editions only (see Table 1.1). The Developer edition has the same feature set as the Enterprise
edition but it is licensed for one machine only.

Table 1.1 SSAS supports three editions to address different user needs.

Edition Choose when

Standard You need to install SSAS on a single server. The Standard edition doesn’t support advanced analytics
and scalability features, such as partitioned cubes, proactive caching, and parallel processing.

Enterprise You need all SSAS features and your OLAP solution must be highly scalable.

Developer You design and develop SSAS databases. The Developer edition supports all SSAS features but it is
not licensed for production use.

For more information about how SSAS editions and other SQL Server 2005 products compare
to each other, read the document SQL Server 2005 Features Comparison (see Resources section).
SSAS 2005 licensing model is simple. Basically, you need a SQL Server license on the machine
where SSAS is installed and there are no special “middleware” exceptions. For example, suppose
your operational requirements call for installing SSAS on a separate server than your SQL Server
RDBMS box. In this case, you will need two SQL Server licenses – one for the SSAS server and
another one for the SQL Server instance.

Why use SSAS?
Traditionally, Analysis Services and OLAP in general have been used in conjunction with data
warehousing. Of course, this scenario is still applicable. Many organizations would use Analysis
Services to build an OLAP layer on top of a relational data warehouse in order to take advantage

SAMPLE

CHAPTER 1 6

of the superior query performance of SSAS. However, thanks to new enhancements in SSAS, I
believe you will find new scenarios for using it, including:

• Rich data analytics – For many organizations, SSAS can become the logical next step for
advanced data analysis and interactive reporting.

• Data mining – An organization could find many uses for the predictive power of data
mining.

• Corporate performance management – With the introduction of KPIs, SSAS can be used to
capture vital company performance metrics. More on this in chapter 12 and 19.

• Centralized repository for business metrics – SSAS supports advanced calculations and is best
suited for storing business metrics and calculations.

• Ad hoc reporting – Besides interactive reports, end-users can create ad hoc reports from
SSAS. We will see how this could be done in chapter 18.

At the same time, as there is no such a thing as a free lunch, SSAS may be overkill for small
organizations because it requires an additional design and maintenance effort. As a rule of
thumb, if standard reporting meets your data analytics and performance needs, it may not be
time to “graduate” to OLAP yet.

1.1.4 SSAS and Microsoft Business Intelligence Platform
SSAS is not the only Business Intelligence product that Microsoft provides. It is an integral part
of the Microsoft Business Intelligence Platform that was initiated in early 2004 with the powerful
promise to “bring BI to the masses”. The Microsoft Business Intelligence Platform is a multi-
product offering that addresses the most pressing data analytics and management needs that
many organizations encounter every day.
 To understand how SSAS fits into this initiative, it may be helpful to depict the Microsoft
Business Intelligence Platform in the context of a typical three-tier architectural view that most
of the readers are probably familiar with, as shown in Figure 1.3. Let’s explain briefly the building
blocks of the Microsoft Business Intelligence Platform.

Figure 1.3 The Microsoft Business
Intelligence Platform provides valuable
services and tools that address various
data analytics and management needs.

SAMPLE

INTRODUCING MICROSOFT ANALYSIS SERVICES 2005 7

SQL Server
The SQL Server relational database engine forms the foundation of the BI Platform. In my
opinion, SQL Server is one of the best products that Microsoft has ever invented. Its relational
database has been holding the top TPC (Transaction Processing Council) benchmarks in the
price/performance category, as you could see online at www.tpc.org. Now that SQL Server comes
bundled with so many valuable add-on services, it is indeed “do more with less”, as the popular
Microsoft slogan goes. While discussing the SQL Server 2005 enhancements and new features
may easily fill a whole book, I would like to bring your attention to a couple of SSAS-related
enhancements that we will be using throughout this book

SQL Server Management Studio
SQL Server 2000 Enterprise Manager is gone and it is replaced by the new SQL Server Manage-
ment Studio (see Figure 1.4). The most prominent feature of the SQL Server Management
Studio is that it can be used to manage all SQL Server services. Figure 1.4 shows that I’ve
connected to an Analysis Services server called Prologika and I’ve executed an MDX query against
the Adventure Works cube.
 The central pane shows the metadata of the Adventure Works cube. You can drag and drop
objects from the Metadata tab, or MDX standard functions, from the Functions tab. Yes, the
query editors support IntelliSense so you could check the function syntax easily! SQL Server
Management Studio comes with a slew of editors, templates, designers, and other tools to meet
the full spectrum of your query authoring, performance optimization and management needs.

Figure 1.4 Use SQL Server Management Studio to manage all Analysis Services, Reporting Services, Integration
Services, and SQL Server installations.

SAMPLE

CHAPTER 1 8

SQL Profiler
Veteran SSAS developers know that, in the past, it was almost impossible to “peek under the
hood” of the SSAS server. This has all changed now since the SQL Profiler has been enhanced
to support capturing and displaying events raised by SSAS 2005. For example, you can use the
SQL Profiler to intercept an MDX query to see how long it takes to execute. We will meet the
SQL Profiler in chapter 13 when discussing SSAS management.

Services layer
On top of the relational database, SQL Server provides various services. The three main BI
pillars are Reporting Services (SSRS), Integration Services (SSIS), and, of course, Analysis
Services (SSAS) which is the subject of this book.

Reporting Services
SSRS is a server-based platform for authoring, managing, and distributing standard reports. SSRS
reports can source data from virtually any data source that exposes its data in a tabular format,
including SSAS. A new SSAS-related feature of SSRS 2005 is the excellent MDX Query Builder
that you can use to create reports from SSAS cubes easily (see Figure 1.5). Figure 1.5 shows that
I’ve authored a Product Sales report by dragging Product dimension and a few measures from
the Metadata pane and dropping them onto the Results pane. In addition, I’ve parameterized this
report by allowing the user to filter the report data for a given calendar year.
 I’ve covered SSRS 2000 in details in my book Microsoft Reporting Services in Action (see the
Resources section). In chapters 18 and 19 of this book, I will show you the most exciting new
features of SSRS 2005 that relate to authoring SSAS-based reports, including the MDX and
DMX query builders, the new Windows Forms and ASP.NET report viewer controls, ad-hoc
reporting, and SharePoint integration.

Integration Services
Today’s enterprise IT shop would typically maintain a hodge-podge of data sources and tech-
nologies. These include desktop databases, legacy mainframe systems (that no one dares to
touch), RDBMS, etc.

Figure 1.5 The MDX
Query Builder makes
authoring reports from
SSAS a breeze

SAMPLE

INTRODUCING MICROSOFT ANALYSIS SERVICES 2005 9

Note One of my projects involved building a data warehouse for a call center of a major financial institution.
The data integration requirements called for extracting data from six databases and consolidating it into a
central data warehouse repository. Most of the project effort was spent on implementing the ETL data
integration processes.

For example, the order tracking data could reside in a SQL Server database, the HR data could
be stored in an Oracle database, while the manufacturing data could be located in a mainframe
database. Integrating disparate and heterogeneous data sources presents a major challenge for
many organizations. This is where SSIS (formerly known as DTS) could be useful. It is typically
used for Extracting, Transforming, and Loading (ETL) processes for data integration.
 SSIS has been completely revamped in SQL Server 2005. There are a few exciting features in
SSIS that specifically target SSAS, including dealing with slowly changing dimensions, imple-
menting low-latency OLAP, and processing partitions. One of the most common OLAP
requirements that could benefit from SSIS is data warehousing. We will see how this could be
done in chapter 6. There are other SQL Server add-on services that you may find more or less
relevant to BI applications. These may include Replication Services to clone data, SQL Server Broker
to raise event notifications, and Notification Services to build sophisticated notification application.

Presentation layer
The OLAP technology will be useless if users cannot browse the data. SSAS itself doesn’t
provide an OLAP browser. The BI platform delegates this role to the Microsoft Office suite,
SharePoint, or third-party products.

Microsoft Office
In section 1.1.1 of this chapter, we had a glimpse of how Microsoft Office Web Components
(part of the Microsoft Office suite) can be used to build “smart” OLAP clients. Besides OWC, in
the last chapter of this book I will show you how to integrate Microsoft Excel and the Office
Business Scorecard Manager 2005 with SSAS 2005 to implement interactive reporting and
performance management.

SharePoint
Use SharePoint to build enterprise-level portal sites. SSAS doesn’t include web parts to browse
cube data. However, the Reporting Services team has built two SharePoint web parts, Report
Explorer and Report Viewer, which can be used to integrate SSRS reports with a SharePoint
portal. We will have a glimpse of how SharePoint Portal Services can be used to disseminate
scorecards in chapter 19.

Other applications
Developers can utilize industry-standard connectivity protocols to integrate SSAS and SSRS
easily with their applications. In chapter 17, I will show you how you can develop custom
OLAP-based applications.

Visual Studio.NET
Finally, developers can use Visual Studio.NET to glue the components of the BI Platform
together. Developers can use the excellent Visual Studio.NET IDE to custom solutions or work
with BI projects. If you don’t have the full-blown version Visual Studio.NET (or you are not
willing to purchase a license), the SQL Server 2005 setup program gives you an option to install a
scaled-down version of Visual Studio.NET, called Business Intelligence Development Studio (BI Studio).

SAMPLE

CHAPTER 1 10

BI Studio supports Analysis Services, Reporting Services, and Integration Services projects. It
gives you the power of the Visual Studio.NET Integrated Development Environment at no
additional cost. Using BI studio, you can centralize the design and management of your BI
projects. Now that we have reviewed the components of the Microsoft BI Platform, let’s find
out what’s so innovative about SSAS 2005.

1.2 Understanding OLAP
SSAS 2005 goes beyond just being an OLAP and Data Mining server. The bold mission of SSAS
is to break out of the OLAP space by unifying the relational and dimensional reporting models.
To understand the new changes in SSAS 2005, it may be useful to take a short trip back in time
and discuss the challenges that enterprise business intelligence has been facing for the past two
decades. Let’s use Figure 1.6 as a roadmap for our tour.
 I will be quick to point out that as it currently stands, UDM shouldn’t be viewed as a
replacement of the relational reporting model or as a competing technology to standard report-
ing. Considering the unified vision of UDM however, one would expect that eventually both
models will be merged in an integrated platform that provides both standard and OLAP report-
ing services.
 Figure 1.6 depicts the evolution of both reporting models, relational and OLAP, and the
“great divide” between them that is a common reality for most organizations today. On the one
side of the dividing line is relational reporting where reporting processes are performed against
relational models. A relational model could represent both a relational OLTP schema (normalized
in the 3rd Normal Form) and a layer built on top of it (e.g. to serve ad-hoc reporting needs).

Figure 1.6 Today’s BI reality is
characterized by the “great divide”
between relational and dimensional
reporting models.

Note Strictly speaking, the dividing line between relational and OLAP reporting processes could be
somewhat blurred. For example, standard reports can be generated from a dimensional data source (e.g.
data mart) if this doesn’t lead to performance issues. For this reason, Figure 1.6 shows a data mart in the
relational reporting section. Chapter 2 discusses various reporting scenarios in respect to the data source
type in more details.

SAMPLE

INTRODUCING MICROSOFT ANALYSIS SERVICES 2005 11

On the other side are OLAP reporting processes that interact with dimensional models. We will
use the term dimensional model to represent a data source that is specifically structured and
optimized to address reporting and data analytics requirements, such as data marts, data ware-
houses, and OLAP cubes.

1.2.1 Relational Model
In the early 1980s, reporting needs were addressed by sourcing data directly from RDBMS. This
model is still popular and widely used today. For example, if your preferred tool of choice for
standard reporting is Microsoft Reporting Services, you can source the report data directly from
RDBMS. As popular as it is, the relational reporting model has well-known deficiencies.

Not user-oriented
The relational model is designed with the system, not the end user in mind. Consequently, to
create a report, the end user has to understand the database relational schema and know SQL.
Isn’t it strange that one of the job requirements for hiring a business analyst is to know SQL?

Performance challenges
Relational reporting could lead to performance issues. The report performance depends, to a
large extent, on the data volume the report needs to process. What’s more, running reports
directly against RDBMS may very well slow down the performance of the OLTP system itself as
a result of locking large number of rows. The reason for this is that pending transactions may be
blocked while waiting for the report query to finish executing and releasing the read locks placed
on the qualifying rows.

Lack of conformity
While the ad-hoc reporting models could abstract the underlying data schema to some degree,
relational reporting is characterized by a lack of conformity. Business calculations and logic are
not centralized in one place. For example, the database developer could define the net dollar
amount calculation of a line item in the database itself, while the report designer could re-define
it in the ad-hoc reporting model. This may be confusing to end users. Often, users are left to
make their own interpretation of the data.

1.2.2 Dimensional Model
To solve some of the challenges of relational reporting, organizations started moving data from
OLTP databases to data marts and warehouses. OLAP servers, such as Analysis Services,
emerged in the late 1990s to provide the necessary CPU power to process the increased data
volumes. A new dimensional model was born to make reporting more intuitive for less technically
savvy users. SSAS embraces and extends the dimensional model, so let’s spend some time
explaining its terminology.

Note Once upon a time, I was called upon to troubleshoot mysterious query timeout errors that a client-
server application was experiencing at random. After some troubleshooting, I pinpointed the culprit to be a
popular ad-hoc reporting tool. Not only was the tool placing read locks on the SQL Server tables, but it
wasn’t releasing the locks even after the report was generated.

SAMPLE

CHAPTER 1 12

Note The terms data warehousing and OLAP are often used interchangeably but an important distinction
exists. As its name suggests, a data warehouse can simply be described as a relational database that
stores vast volumes of data. The term OLAP, on the other hand, represents the service layer introduced
between the warehouse and users to make data available for fast retrieval and analysis. A data ware-
house solution may not feature an OLAP server. Similarly, an OLAP server, such as SSAS 2005, may
draw its data directly from the OLTP system, instead of from a data warehouse. That said, both data
warehousing and OLAP use dimensional modeling as a core technique to organize data and make it more
suitable for data analytics and reporting. There are some differences in their terminology though. For
example, the data warehouse model refers to business metrics as facts, while OLAP uses the term
measures.

Measures
Measures represent the numerical values (facts) that are used to measure business activity. Let’s
have a look again at our interactive report shown in Figure 1.7. This report displays the company
sales performance. The only measure used in this report is Sales Amount. Other measures may
include tax amount, discount, profit, order count, etc.
 Measures are physically stored in relational tables called fact tables. These tables are usually
narrow (don’t have many columns) but can have thousands to millions rows of historical data. In
addition, fact tables have foreign keys that link them to dimension tables.

Dimensions
As its name suggests, the main goal of the dimensional model is to allow users to slice and dice
data using different perspectives called dimensions. Dimensions reflect the natural way end users
would prefer to view and query data. For example, our report allows users to browse data by two
common dimensions: Product and Time.

Figure 1.7 Dimensional model is designed to provide intuitive end-user reporting experience.

SAMPLE

INTRODUCING MICROSOFT ANALYSIS SERVICES 2005 13

Dimension hierarchies
To facilitate drilling through data, dimensions may have hierarchies. For example, in our sample
report, the time dimension hierarchy consists of the following dimension levels: Year, Seminar,
and Quarter. The quarters can be further broken down into more granular levels, e.g. Month and
Day. Similarly, the Product dimension hierarchy includes the Category, Subcategory, and Model Name
levels. A dimension level summarizes (“aggregates”) data at that level. For example, since the user
hasn’t expanded the 2003 quarter, 2003 sales data on this report are aggregated at the Quarter
level.

Dimension members
The actual dimension entities that belong to each level are called dimension members. Thus, the
members of the Calendar Year level are 2003 and 2004, while the members of the Category level
are Accessories, Bikes, Clothing, and Components. Another way to depict the dimension hierarchy is to
use an organizational chart, as the one shown in Figure 1.8.

The top level of a dimension is depicted as All level, which is how SSAS terminology refers to it.
It is a handy way to retrieve the total aggregated value for the whole dimension. The All level
usually serves as the default dimension member. For example, if I am to remove the Time
dimension from the report, the report will show the product sales for all time periods. The
members of the lowest level of a dimension hierarchy are called leaf members. For example, if the
Quarter level is the lowest level in our Time dimension, the quarters are the leaf members.

Dimension tables
Dimension data are stored in relational tables called dimension tables. Unlike fact tables, dimension
tables are usually wide (have many columns) but don’t have many rows. The large number of
columns is required to accommodate various dimension-related attributes that could be of interest
to the end users. For example, a product dimension could have attributes such as product
description, color, model, list price, listed date, discontinued date, etc.
 The classic dimensional model defines two types of relational schemas (see Figure 1.9) that
describe the relationship between the dimension and fact tables: star and snowflake. A star schema
requires that a dimension hierarchy be contained within a single table. This requires the dimen-
sional table to be denormalized. For example, going back to the sales report, if a star schema is
chosen for the product dimension, the product data may look like this:
ProductID ProductCategory ProductSubCategory ModelName
1 Bikes Montain Bikes Montain-200
2 Bikes Montain Bikes Montain-300

If the dimension hierarchy is left normalized, then the schema is of a snowflake type. Over the
past decade, dimensional model scholars have staged fierce battles in a quest to find out which
schema type reigns supreme. The “classic” dimensional model promotes the star schema.
Indeed, if the user queries the relational database (e.g. data warehouse) directly, a snowflake
schema will require the user to link the dimension tables together. This assumes that the user has

Figure 1.8 Dimension
hierarchies organize
members in levels.

SAMPLE

CHAPTER 1 14

the necessary technical skills to do so, but wasn’t this the problem that the dimensional model
was trying to avoid in the first place? Moreover, in comparison with snowflake schemas, stars
schemas are easier to maintain and update.

On the other hand, snowflake schemas could support more flexible relationships, such as
referenced and many-to-many relationships (discussed in chapter 5). In addition, they could save
storage space with large dimensions. SSAS takes a nonchalant view of this schema debate and
supports both schema types. A noticeable exception is the dimension writeback feature which is
only supported with star dimensions. In real life you should carefully weigh out the pros and
cons of both approaches and choose the schema that best meets your requirements. In general, I
would recommend you gravitate toward star dimensions whenever possible and consider
“upgrading” them to snowflake dimensions if needed. Dimension terminology has some
additional classifications but, for time being, this is all you need to know about dimensions.

Cubes
The Sales by Product Category report (see again Figure 1.7) is an example of a two-dimensional
report. SSAS is not limited to storing and displaying information in a two-dimensional format.
As I’ve mentioned, one of the FASMI requirements is that every OLAP system must be multidi-
mensional, so users can view data from as many dimensions as they want. In addition, the OLAP
multidimensionality shouldn’t sacrifice performance.

How are cubes implemented?
To achieve these demanding requirements, SSAS employs the logical concept of a cube as a main
storage object. The term logical in our definition means that, unlike relational objects (tables,
views, etc.), the cube doesn’t have a physical realization. Thus, if you browse the SSAS storage
folder (the default is C:\Program Files\Microsoft SQL Server\MSSQL.2\OLAP\Data), you
won’t find any multidimensional or other exotic structures. Instead, you will find a large number
of files that store data in binary format. During runtime, SSAS performs its “magic” and exposes
the content of these files to clients as a multidimensional cube. Figure 1.10 shows how you can
visualize a cube that has three dimensions.
 Suppose that we connect OWC to this cube. We can now browse by three dimensions –
Year, Product, and Territory (for the sake of simplicity, let’s assume that the three dimensions
don’t have hierarchies). The intersection of the cube dimensions is called a cube cell. For exam-
ple, the shaded cell in the figure is found at the intersection of the following dimension members

Figure 1.9 The
dimension-to-fact
relational schema could
be star or snowflake.

Definition The cube is the logical storage object in SSAS. It combines dimensions and measures to provide
fast multidimensional access to the cube data.

SAMPLE

INTRODUCING MICROSOFT ANALYSIS SERVICES 2005 15

– 2003 (Year dimension), Bikes (Product Category dimension), and North America (Territory
dimension). Each cell of the cube holds a single value.

Tip When visualizing the cube, it may be helpful to think of the cube measures as separate dimensions. In
our case, we have two measures (sales amount and order count). Each intersection between the cube
dimensions and measures will result in a single cell. Since it is difficult to show the cube in four perspectives,
I split the cell in two - the upper cell in the figure shows the sales amount; the lower shows the order count.

We live in a three-dimensional space, so it is natural for us to visualize a three-dimensional cube.
However, SSAS 2005 cubes can and usually have more than three dimensions. In fact, SSAS
2005 cubes support more dimensions than you will ever need (in the range of billions). Since
many of the cube limitations in the past have been removed, an SSAS 2005 cube could really be
viewed as a “super-cube”. In fact, you are encouraged to build your entire OLAP layer on top of
an enterprise-wide data warehouse with a single SSAS 2005 cube.

Cube storage
From a user perspective, a cube appears to store all fact rows and have aggregated values for
each cell. For example, if the user hasn’t expanded the Calendar Year hierarchy, the cube will
show the annual totals. Similarly, if the user drills down to the Quarter level, the cube will readily
return the quarter aggregated values.
 In reality, the cube may have neither the fact rows, nor the aggregated values stored in it. In
this case, the cube will aggregate the values on the fly. As an UDM designer, you can tell SSAS
where the fact data and aggregations will be kept – in the relational database (ROLAP storage),
in the cube (MOLAP storage), or both (HOLAP storage). SSAS cubes usually perform best
when all data (details and aggregations) are stored in the multidimensional store on the server, i.e.
when MOLAP storage model is used. In this way, the cube can answer all queries without
querying (and impacting the performance) of the underlying data source. On the downside, since
the server keeps a copy of dimension and fact data (MOLAP storage option), it has to be
updated (processed) when the dimensional structure or source data changes.

Figure 1.10 The cube is the main
storage object in SSAS. The cube is a
multidimensional structure that consists
of dimensions and measures.

SAMPLE

CHAPTER 1 16

Dimensional model challenges
By now, you are probably convinced that the dimensional model has many advantages over its
counterpart, the relational model. It is the cornerstone of the OLAP technology and it is very
popular today. At the same time, the dimensional model is not without its shortcomings. Let’s
mention a couple of them.

Data fidelity lost
While dimensions reflect the natural way end-users prefer to analyze data, important dimension
characteristics could be lost when transforming OLTP data to fit into the “classic” dimensional
model. For example, the Product dimension we’ve discussed has a hierarchy that reflects the
natural way end users would prefer to browse the product sales data – by category, subcategory
and product name.
 However, the original Product relational schema may have included columns for product
color, size, model, etc. With the classic dimensional model these attributes could be simply “lost”
when the Product dimension hierarchy is created or require additional dimensions to be imple-
mented. The end result is that the user may not be able browse or filter data using these attrib-
utes.

Data latency
The second well-known issue surrounding the OLAP model is data latency, since the same data
extracts would exist in all the OLAP repositories – data marts, data warehouse, and OLAP
cubes. This is further aggravated by latency issues. It is not uncommon for ETL processes to
take hours, if not days to complete. By the time data arrives in the OLAP cubes and it is available
for reporting, it may be significantly outdated.

1.3 Understanding The Unified Dimensional Model
In summary, most of today’s organizations have accumulated a mixture of two distinct storage
models, relational and dimensional, and each of them has its own pros and cons. What is exciting
about SSAS 2005 is that is starts a novel journey to unite both relational and dimensional models
by combining the best aspects from both. This model is called Unified Dimensional Model or UDM

Figure 1.11 The SSAS 2005 Unified
Dimensional Model solves some of
today’s BI challenges by uniting the
relational and dimensional models.

SAMPLE

INTRODUCING MICROSOFT ANALYSIS SERVICES 2005 17

for short, as shown in Figure 1.11. UDM is unified because its goal is to unite the relational and
dimensional models. It is dimensional because it has its roots in the dimensional model.

Definition The SSAS Unified Dimensional Model (UDM) converges the relational and dimensional models.
The physical manifestation of UDM is the SSAS 2005 cube.

1.3.1 Relational Model Features
At this point, some of the OLAP-savvy and perhaps skeptical readers may wonder if the notion
of UDM is not too far-fetched. Let’s enumerate some the most prominent characteristics of
UDM that justify its bold vision to become the “next stage” for OLAP. We will start with the
UDM features that bring it closer to the relational reporting model.

Rich schema
As I mentioned, one area where the classic OLAP falls behind compared to the relational model
is loss of data fidelity. The end product of the classic dimensional model could be intuitive user
hierarchies but at the cost of losing the ability to browse data from other perspectives. One of
the most exciting new features of SSAS 2005 is attribute-based dimensions. With UDM, each column
(attribute) from a dimensional table can be exposed as a hierarchy by itself. In fact, the UDM
cube space is a product of attribute-based hierarchies, while multilevel hierarchies are optional.
 For example, consider a Product dimension table that includes product attributes that are
not part of or are not naturally related to the Product Category dimension, such as product
name, list price, and color. UDM makes it possible to report off these attributes (see Figure
1.12).

Figure 1.12 UDM is an
attribute-based model and it
supports both multi-level and
attribute-based hierarchies.

As Figure 1.12 shows, UDM doesn’t force you to use the Product Category dimension when
browsing sales data by product. Instead, just like with relational reporting, you can drop the
product related attributes side-by-side. To achieve the same effect in SSAS 2000, the cube
designer had to create multiple dimensions which led to duplication of definitions and storage.

Flexible schema
One of the trademarks of the relational reporting model is that it enjoys a flexible database
schema. Indeed, complex relationships, e.g. one-to-many, many-to-many, outer joins, etc, have
been a part of the core relational schema model from its beginning. Similarly, with UDM, you are
not confined to star and snowflake schemas anymore. In addition, UDM introduces new
dimension roles (referenced, many-to-many, role playing, degenerate, etc) that enable new
scenarios. Let’s mention one scenario that UDM makes possible.
 With the “classic” dimensional model it has been traditionally difficult to join two fact tables
that summarize data at different levels (called grain in the OLAP terminology). For example, the
grain of the time dimension in your cube may be days. At the same time, you may also have a

SAMPLE

CHAPTER 1 18

sales quota fact table which stores the sales person quotas at a quarter level. Suppose that your
requirements call for joining both tables to compare the sales person’s performance and her
quota side-by-side.
 There were a few techniques in SSAS 2000 to address the multi-grain issue, including parent-
child dimensions, inserting “fake” members, using virtual cubes, but none of them presented a
clean solution. In contrast, UDM addresses this issue gracefully by simply allowing you to define
the grain at which a given dimension joins both fact tables, as shown in Figure 1.13. In this case,
I have specified that the time dimension will join the fact table at Calendar Quarter level. It can’t
be easier, really!

Figure 1.13 With SSAS 2005 you
can easily join dimension and fact
tables at different grains.

Low latency
The business requirements of today’s economics mandate ever-shrinking time windows to make
data available for reporting and analysis. UDM makes real-time OLAP and building low latency
OLAP applications a possibility. There are two techniques to accomplish this. The first tech-
nique involves pushing the data directly into the cube (push-mode processing) without updating
the underlying data source. For example, you may have a sales cube built on top of a data
warehouse database. The processes of extracting, transforming, and loading the order data into
the data warehouse may take significant time to execute. Yet, business requirements may dictate
new order data to be available for reporting within a few hours. With SSAS 2005, you can build a
light-weight data integration package that runs frequently and trickle-feeds the new orders into a
cube completely bypassing the data warehouse tables. Unresolved dimensions can be defaulted
to unknown values until the “full-blown” data integration package executes.
 The second technique is more suitable for cubes built directly on top of OLTP databases. It
allows you to put the cube in “auto-pilot” mode by leveraging the new proactive caching feature.
When proactive caching is enabled on an SSAS 2005 cube, the cube can detect changes to the
underlying data and automatically update its dimensional structures. I will show you how you can
implement real-time OLAP in chapter 15.

SAMPLE

INTRODUCING MICROSOFT ANALYSIS SERVICES 2005 19

Simplified management
There are several provisions in SSAS 2005 to simplify the management effort. SSAS 2005
removes the limitation that a cube can have only one fact table. What this means to you is that
you can store the entire dimensional model into a single “super-cube”. If you worry about what
impact this will have on performance and scalability, rest assured that your UDM model scales
well. SSAS 2005 gives you the means to scale out large deployments, e.g. by partitioning the cube
across multiple servers and load-balancing these servers in a cluster.
 To minimize the management and design effort, BI Studio provides a slew of wizards and
designers. For example, The Cube Wizard can help you “jumpstart” the cube dimensional model
by heuristically examining the relational schema and suggesting measures. As its name suggests,
the New Dimension wizard walks you through the process of adding a new dimension. Finally, a
brand new .NET-based object model called Analysis Management Objects (AMO) has been
introduced to supersede the SSAS 2000 Decision Support Objects (DSO) model and allow
developers to implement SSAS management features in their .NET applications.

Detail reporting
You shouldn’t view relational and OLAP reporting as competing but, rather, complementary
technologies that address different user needs. Therefore, SSAS 2005 will not be my tool of
choice for generating OLTP-based relational reports, such as a common order report (order
header with line items). Instead, use SQL Server Reporting Services for your standard reporting
needs.
 Yet, UDM provides several ways to view detail data. First, you can use a feature called
drilltrough to see the underlying rows under a given dimension member or a cube cell. For
example, the cube may aggregate sales order data on a daily basis. Yet, users may want to view
the individual orders placed on a given day. You can implement this requirement by enabling
drillthrough for that cube. This, of course, assumes that the OLAP browser supports this
feature.
 Second, you can use UDM actions. Considering the above example, if drilldown is not a good
fit or is not supported by the OLAP browser, you can implement an action to launch a standard
report (e.g. a Reporting Services tabular report) to display the invoices. Once the action is
configured, the end-user could right-click on the cube cell in question to launch the report from
the dropdown menu.

1.3.2 Dimensional Model Features
While SSAS 2005 comes with exciting new features, its stays close to its roots. The core dimen-
sional concepts are the same. Now let’s discuss briefly how UDM leverages and enhances the
dimensional model.

Intuitive reporting
Intuitive end-user oriented reporting has been the hallmark of the dimensional model since its
inception. As I mentioned, UDM makes the user experience even richer by enabling reporting
scenarios that are not part of the core dimensional model, such as actions, drillthrough, and
attribute-based reporting.

SAMPLE

CHAPTER 1 20

High Performance
OLAP user experience is directly correlated to the query performance. As noted, there are two
factors that contribute most to the SSAS efficiency – the optimized query engine and the cube
multidimensional model. SSAS 2005 brings additional performance enhancements. Most of them
are related to the fact that SSAS 2005 cubes are not limited to having one fact table anymore.
What this means to you is that you don’t have to use virtual cubes anymore. Another cause of
grievance in the past was that SSAS 2000 required all dimensions to be loaded in memory. To
address this issue, SSAS 2005 loads dimensions in memory on as-needed basis.

Rich analytics
There are many new features in SSAS 2005 that bring rich business intelligence features to end
users. Some of them were available in the previous releases as well, but they were not straight-
forward to implement. To facilitate defining advanced analytics features in SSAS 2005, the
Analysis Services team introduces a brand new Business Intelligence Wizard (see Figure 1.14). For
example, one of the common reporting requirements is to compare data over parallel time
periods, e.g. sales figures between the first quarters of two consecutive years. As Figure 1.14
shows, the Define time intelligence feature of the Business Intelligence Wizard can help you save
time by generating such time-related metrics for you. We will see how to add advanced business
intelligence features to UDM in chapter 10.

Powerful calculations
The calculation engine has been completely redesigned in SSAS 2005. You still have to know
MDX to define your calculations, but authoring and testing MDX logic is much easier now.
Issues that have pestered MDX developers in the past (solve order, pass) have simply disap-
peared. One welcome enhancement is that all MDX constructs (calculated members, cell
calculations, named sets) are centralized in one place (the Calculations tab of the Cube Designer),
as shown in Figure 1.15.
 In this case, I use the Calculations Script View pane to define several calculated members,
named sets and MDX scripts. .NET developers will undoubtedly find many similarities between
the Script View and Visual Studio.NET. Similar to working with the Visual Studio.NET IDE,

Figure 1.14 Use the Business
Intelligence Wizard to add advanced
business intelligence features.

SAMPLE

INTRODUCING MICROSOFT ANALYSIS SERVICES 2005 21

MDX developers can use breakpoints, debug MDX scripts, and see the effect of the executed
script. For example, Figure 1.15 shows that I’ve just stepped out of a breakpoint and the Pivot
Table has highlighted the effected cell. The SSAS calculation engine is also extensible. Develop-
ers can plug in additional programming logic in the form of SSAS stored procedures that can be
written in any .NET-compatible language. We will cover MDX programming in part 3 of this
book.

Data semantics
Unlike the relational model, which is oblivious to the meaning of data, UDM can be “educated”
to understand the data semantics. For example, UDM understands Time dimension and chart of
accounts. In the later case, UDM knows how to map the account data to pre-defined categories,
such as income, expenses, and taxes, and apply the required calculations. We will see how to
implement advanced intelligence features in chapter 5.

1.3.3 UDM Components
At this point, you are probably curious about how UDM is implemented. The physical manifes-
tation of UDM is the new Analysis Services 2005 cube. Therefore, I will use the terms UDM and
cube interchangeably throughout the rest of the book. As Shrek would undoubtedly attest, just
like ogres, UDM has layers. Figure 1.16 shows how you can visualize UDM. As you could notice,
I’ve stacked the UDM components in the chronological order they will be typically implemented.
To reflect this natural flow, the book is organized in the same way and the numbers shown
inside the individual layers represent the chapter(s) where the corresponding layer is discussed.

Figure 1.15 Use the
MDX Script View to
centralize the cube
calculations in one
place and debug
MDX scripts.

SAMPLE

CHAPTER 1 22

Data source view (DSV)
UDM is based on a logical data schema that seeks to present the data from the relational data
store in a standard and intuitive way. UDM implements the schema in the form of a data source
view (DSV). Besides providing the UDM data schema, DSV isolates the cube dimensional model
from changes in the underlying relational databases.

Dimensional model
Once DSV is created, the next step will be implementing the cube dimensional model. The end
result of this process is the cube definition consisting of measures and dimensions with attribute
and/or multilevel hierarchies.

Calculations
Only in rare cases, the dimensional model alone will fully meet your needs. As a UDM designer,
you can augment your cube with specific business logic in the form of MDX expressions.

End-user model
As noted, the main design goal of the dimensional model is to provide intuitive end-user
reporting and data navigation experience. By “end-user model”, we will understand the addi-
tional features you can build on top of the dimensional layer to provide even richer data seman-
tics. These features include Key Performance Indicators (KPIs), actions, perspectives, and
translations. For example, if the cube will be browsed by international users, dimension levels
could be localized by using translations. Or, you can use perspectives to define named subsets of
large and complex cubes for easier navigation.

Management settings
At last, the cube is ready for prime time. As a last step, a savvy administrator would configure the
cube to meet various operational requirements, including availability, latency, and security. For
example, in this stage the cube administrator will configure which users will be able to access the
cube, when and how the cube data will be updated, the cube storage model, etc.

Figure 1.16 The physical manifestation of
UDM is the SSAS 2005 “super-cube”. Its main
building blocks are data source view,
dimensional model, calculations, end-user
model, and management settings.

SAMPLE

INTRODUCING MICROSOFT ANALYSIS SERVICES 2005 23

1.3.4 To UDM and Beyond
By now, you should be able to understand the UDM goal to unite the best of both worlds
(relational and dimensional) and become a bridge between the users and data. One could
envision UDM to evolve in time to a point where the other relational and dimensional models
are simply not needed and will disappear, as shown in Figure 1.17.

Figure 1.17 In time, UDM could
replace the other reporting models
to provide both relational and
dimensional reporting needs.

When this happens, UDM will be able to serve both relational and dimensional reporting needs.
Besides simplicity, having a single model will bring also conformity. Business logic and calcula-
tions could be defined in one place. As an added bonus, all reporting clients will be able to
benefit from the performance boost they will get from SSAS.

Note To some extent, SQL Server 2005 and the Microsoft BI platform give you the tools to materialize the
“unified” vision of having UDM as a focal point for data analytics. For example, as I will demonstrate in
chapters 18 and 19, Reporting Services and the Microsoft Office analytics tools integrate well with UDM.
However, as noted before, you shouldn’t expect UDM to address all reporting requirements equally well.
That’s why I don’t suggest you quickly throw away your reporting tools in favor of UDM. In my opinion,
medium to large-size organizations will benefit most from leveraging UDM as a central repository.

1.4 Analysis Services Architecture
Readers who have prior SSAS experience have probably heard the popular saying that all roads
to SSAS 2000 go through the PivotTable Service (PTS). PTS was the primary method for
interacting with Analysis Services 2000 to perform tasks such as connecting to a cube and
retrieving data. It was designed as a client-side component and, as such, it had to be installed on
the machine where the client application was installed. PTS helped query performance by
providing client-side caching. In many cases, however, PTS was simply getting in the way. For
example, PTS wasn’t designed to work with server-based applications. The good news is that the
SSAS 2005 architecture is entirely server-based, as shown in Figure 1.18. This enables flexible
client integration scenarios, e.g. implementing thin clients that require no installation footprint.
 Let’s discuss the SSAS building blocks starting with the Analysis Services server.

SAMPLE

CHAPTER 1 24

Figure 1.18 SSAS 2005 is implemented
as a server-based middle-tier platform.
At the heart of the SSAS architecture is
the Analysis Services server which
provides storage, calculations, and data
mining services.

1.4.1 Analysis Services Server
At the heart of the SSAS architecture is the Analysis Services server. The SSAS server provides
the following main services:

• Storage – The Storage Engine is responsible for storing and processing SSAS objects. It
also keeps the UDM object definition (called metadata).

• Calculations – The Formula Engine handles MDX queries and expressions.
• Data mining – The Data Mining Engine processes mining queries and returns prediction

results.

As with the previous releases, the SSAS server is implemented as a Windows service called
MSMDSRV.EXE written in C++ native code. By default, the setup program installs the Analysis
Services Server in C:\Program Files\Microsoft SQL Server\MSSQL.2. You can install more
than one instance of SSAS 2005 on a single machine and different versions (e.g. 2000 and 2005)
can co-exist side-by-side. Perhaps the most interesting SSAS architectural change is that it
embraces XML for Analysis (XMLA) as a native protocol. In fact, you cannot communicate with
SSAS in any other way than using XMLA. Given the strategic importance of XMLA, let’s spend
some time introducing this protocol.

1.4.2 XML for Analysis (XMLA) Specification
As its name suggests, the XMLA protocol conforms to XML-based grammar called XMLA
specification. The purpose of this specification is to standardize the data access between OLAP
clients and analytical data providers, such as SSAS. Since its debut in mid-2001, XMLA gained
support with more than twenty vendors, including the three founding members -- Microsoft,
Hyperion, and SAS (see the Resource section). The XMLA specification is managed by the
XMLA council (xmla.org). As of the time of this writing, the most current version of the XMLA
specification is 1.1. This is the version that is implemented in SSAS 2005.

SAMPLE

INTRODUCING MICROSOFT ANALYSIS SERVICES 2005 25

XMLA embraces the SOAP protocol for sending and receiving XMLA messages to a XMLA-
capable provider. The actual SOAP grammar is very simple (Figure 1.19). It describes just two
methods, Discover and Execute, which every XMLA provider must support.

Discover
An OLAP client calls the Discover method to obtain the metadata that describes OLAP and data
mining objects. For example, an OLAP client can ask the SSAS 2005 server to return a list of all
cubes defined in an Analysis Services database by invoking the Discover method.

Figure 1.19 The XMLA protocol
consists of Discover and Execute
methods. A client can use the
Execute method to send ASSL
commands or statements.

Execute
Execute is an action-oriented method. A client can invoke the Execute method to send either
ASSL commands or statements.

Analysis Services Scripting Language (ASSL)
Analysis Services Scripting Language (ASSL) is an XML-based grammar that describes the UDM
metadata (DDL grammar) and commands.

• Data Definition Language (DDL) grammar – DDL is the internal representation of metadata
in Analysis Services 2005. DDL describes the object definition, e.g. a cube definition.
You can see the DDL grammar by right-clicking on the object in the BI Studio Solution
Explorer and choosing View Code.

• Command language grammar – A subset of ASSL defines some action-oriented commands
that could be sent to the server, e.g. for processing, altering, or creating objects. For ex-
ample, each time you process a cube, BI Studio generates an ASSL script that includes a
Process ASSL command.

The Execute method can (and most often) is used to send also statements.

Statements
With OLAP, the Execute statements describe MDX queries, while with data mining, they
contain DMX queries. The query results are returned as a rowset (for SQL and data mining
queries), or in the form of a more complex structure called MDDataSet in the case of OLAP
(MDX) queries.
 What may be confusing is that both MDX and DMX also define DDL statements. For
example, MDX defines a CREATE MEMBER construct to create a new calculated member,
while DMX supports a CREATE MINING MODEL to create a data mining model. It is
important to understand that these DDL statements have nothing to do with the ASSL DDL
grammar although they have ASSL equivalents. In addition, MDX and DMX DDL statements
are less flexible than DDL.

SAMPLE

CHAPTER 1 26

XMLA Connectivity Options
SSAS 2005 gives you two connectivity options to send XMLA messages to an Analysis Services
server. By default, the client communicates with the server via TCP/IP. However, SSAS can be
configured also for HTTP connectivity to enable web-based integration scenarios.

XMLA over TCP/IP
The XMLA over TCP/IP connectivity option is more suitable for intranet deployments. With
this option, the SOAP messages are serialized in binary format and sent over TCP/IP to the
SSAS server. You don’t need to take any extra steps to configure SSAS to use XMLA over
TCP/IP. For example, if you use Office Web Components and set its connection string to use
the OLE DB Provider for Analysis Services 9.0, the provider will communicate with SSAS over
TCP/IP.
 Compared to HTTP connectivity, the XMLA over TCP/IP connectivity option has slightly
better performance since no additional layers are introduced between the client and the SSAS
server. The tradeoff is that the client has to be able to connect directly to the port the SSAS
server is listening to (2383, by default) which may conflict with firewall policies.

XMLA over HTTP
In this case, IIS is used as an intermediary to receive the HTTP requests. To set up SSAS 2005
for HTTP connectivity, you need to set up an IIS virtual root that will host the SSAS XMLA
provider (a.k.a. Pump). The purpose of the Pump component is to accept the incoming HTTP
requests from IIS and forward them to the SSAS server over TCP/IP. Once the HTTP connec-
tivity is set up, change the connection string to point to the IIS virtual root, e.g.
http://<ServerName>/<VRoot>/msmdpump.dll.
 Consider the XMLA over HTTP option when you need to connect to SSAS over the
Internet or when direct connectivity to SSAS is not an option. For example, security require-
ments may enforce access to SSAS only over port 80 (HTTP) or 443 (SSL). HTTP connectivity
could be a good choice when you cannot install programming libraries, e.g. when you need to
implement thin or non-Windows clients, e.g. a Java-based OLAP client running on UNIX box.
The XMLA over HTTP connectivity option is described in more details in chapter 16.

1.4.3 SSAS Clients
OLAP clients have several available programming interfaces to connect to SSAS 2005. No
matter which connectivity option is chosen, the interface library translates the calls to XMLA.
Code samples demonstrating different integration options are provided in chapter 17.

Thin clients
Thanks to its entirely server-based architecture and support of industry-standard protocols
(HTTP, XMLA, and SOAP), SSAS 2005 can be integrated with any SOAP-capable client
running on any platform with no installation footprint. In this case, the client is responsible for
constructing SOAP requests conforming to the XMLA specification and interpreting XMLA
responses.

Win32 native clients
C++ clients would typically connect to SSAS 2005 using the OLE DB for Analysis Services.
This is how OWC connects to SSAS 2005. The provider you need is OLE DB Provider for
Analysis Services 9.0 (Provider=MSOLAP;3 in the connection string). You cannot use an older

SAMPLE

INTRODUCING MICROSOFT ANALYSIS SERVICES 2005 27

provider, e.g. version 8.0, because only version 9.0 knows how to translate the OLE DB for
Analysis protocol to XMLA. COM-based clients, such as Visual Basic 6.0 clients, can connect to
SSAS 2005 by using the ADO MultiDimensional library (ADOMD) which is implemented as a
COM wrapper on top of the OLE DB provider.

.NET clients

.NET clients can connect to SSAS 2005 using the ADO MultiDimensional for .NET library
(ADOMD.NET). ADOMD.NET doesn’t require the OLE DB Provider for Analysis Services
9.0 to be installed on the client machine. It is implemented as a light-weight managed wrapper on
top of XMLA. Interestingly, SSAS provides also a server-side object model in the form of the
ADOMD Server library (ADOMD.NET Server) residing inside the Analysis Services server. The
main difference between ADOMD Server and ADOMD.NET is that the former doesn’t require
the developer to set up a connection with the server explicitly before sending queries or navigat-
ing the server objects. Other than that, both libraries provide almost identical set of objects.
 For management tasks, .NET developers would use the brand new Analysis Management
Objects (AMO) library. With the AMO library, you have access to the full Analysis Services
object hierarchy, including servers, databases, data source views, cubes, dimensions, mining
models, and roles. Developers would typically use the AMO library to automate routine man-
agement tasks, such as database synchronization and processing. AMO supersedes the Decision
Support Objects (DSO), the object model of SSAS 2000. DSO is still available for backward
compatibly in the form of the DSO9 object library. However, as the documentation states, DSO
will be removed in the next version of Microsoft SQL Server and you are strongly encouraged to
migrate your management applications to AMO.

1.5 Analysis Services in Action
Let’s demonstrate some of the concepts that we’ve discussed so far in a short hands-on lab.
Before we start, let’s introduce an imaginary company, called Adventure Works Cycles. Adventure
Works Cycles (or AWC, for short) manufactures and sells bicycles to resellers and individuals in
North America, Europe, and Australia. In 2001, its first year of operation, AWC sales accounted
for more than ten million dollars. Since then, the AWC business has been growing exponentially
to reach the record high of forty million dollars in total sales in 2003. However, the AWC
business took a downturn in 2004 and sales fell below the projected figures. Direct sales to
customers remain constant, while resales fell almost fifty percent.

1.5.1 Introducing Adventure Works Sales OLAP System (SOS OLAP)
The AWC management has decided to implement a BI reporting solution to get more insight
into the company performance and its customers. And, as you probably guessed it, AWC has
hired you as an architect to lead the design and implementation of the strategic Adventure Works
Sales OLAP System, or SOS, as the AWC information workers affectionately refer to it to
emphasize its much awaited arrival. It is worth mentioning that, as useful as our fictitious system
could be, it is not meant to serve as a complete solution for sales analytics. Instead, you should
view it as a sample whose main objective is to help you learn SSAS 2005.

SAMPLE

CHAPTER 1 28

The current system
After a series of acquisitions, Adventure Works Cycles operates several software systems
spanning different technologies. The employee data is stored in an Oracle-based HR system,
while the manufacturing data is captured in an IBM mainframe system. The sales ordering data is
stored in a SQL Server database 2005 called AdventureWorks.

Note SQL Server 2005 comes with two sample databases. AdventureWorks simulates an OLTP sales
order database, while AdventureWorksDW imitates a data warehouse database that sources its data from
the AdventureWorks database. You can find the AdventureWorks OLTP Visio schema in the Data-
base\AWC folder of the book source code. As you can see by browsing its seventy tables, the Adven-
tureWorks database is inherently more complex than FoodMart or other SQL Server sample databases
that you may have encountered in the past.

The sales representatives use a Windows Form intranet application to capture orders placed
through the resale channel. Web customers purchase AWC products online through the AWC
Intranet website. In both cases, the sales orders are stored in the AdventureWorks OLTP database.
A sales order is assigned different status codes as it goes though the order management pipeline,
e.g. In Process, Approved, Shipped, or Cancelled. AWC has a cutoff period of one month for the order
to be considered finalized (Shipped or Cancelled).
 AWC has already built a data warehouse to archive the sales history. Data from relevant
systems is extracted, transformed, and loaded in the data warehouse. Shipped sales orders that
are older than a month are extracted from the AdventureWorks OLTP system and offloaded to the
warehouse. The role of the data warehouse is fulfilled by the AdventureWorksDW sample data-
base, which can be installed by running the SQL Server setup program.

Reporting challenges
Currently, enterprise reporting needs are addressed by running standard reports directly against
the warehouse database. This reporting model is characterized by several of the standard
reporting deficiencies we enumerated in 1.2.1, including:

• Inadequate reporting experience – Business analysts complain that they cannot slice and dice
data from different perspectives easily. Different reporting tools are used based on the
user skill set, ranging from Excel spreadsheets to high-level reporting tools, such as Re-
porting Services.

• Performance issues – Reports that aggregate large volumes of data take a long time to exe-
cute.

• Insufficient data analytics – Complex business logic and calculations cannot be easily im-
plemented on top of the data warehouse relational schema. Subsequently, they are often
redefined from one report to another and stored as part of the report, instead of in a
central repository. In addition, the current reporting model doesn’t support pattern dis-
covery and forecasting.

To address the current report deficiencies, you’ve decided to use SSAS 2005 as an OLAP engine
that will power the new SOS system.

The solution
You envision the SOS system to provide three major functional areas – a historical layer, a real-
time UDM layer, and a reporting layer.

SAMPLE

INTRODUCING MICROSOFT ANALYSIS SERVICES 2005 29

Historical UDM
The main purpose of the SOS system is to provide fast and uniform access to the data stored in
the data warehouse. This objective will be achieved by building a UDM layer in the form of an
Analysis Services 2005 cube on top of the warehouse database. The historical UDM layer will
serve most of the OLAP requirements and all data mining requirements.

Real-time UDM
To address real-time BI needs for reporting off volatile order data that hasn’t been offloaded to
the data warehouse, a real-time (hot) OLAP layer will be built directly on top of the Adventure-
Works OLTP system. The real-time UDM layer will be implemented as a second SSAS 2005
cube that will provide a subset of the data analytics feature set of the historical UDM.

Note We will keep the real-time UDM light-weight on purpose. From a learning perspective, there is no
point duplicating the same feature set in both the historical and real-time UDM models. Instead, when
implementing the real-time UDM, our focus will be demonstrating UDM features that are particularly
relevant to low-latency OLAP solutions, such as data source views and proactive caching. In real life, of
course, you can have a more sophisticated and feature-rich real-time layer if required.

The term real-time here means that the cube will pick up changes in the transactional data almost
instantaneously, instead of requiring explicit processing.

Reporting layer
Since the AWC business analysts have different reporting needs, you envision leveraging several
BI reporting tools for presenting data to the end users, including custom applications, Reporting
Services, and Microsoft Office.

1.5.2 Your First OLAP Report
Suppose the Adventure Works business analysts would like to be able to generate interactive
sales reports to slice and dice data from different angles. Let’s see how we can address this
requirement by using two reporting technologies: standard reporting and OLAP reporting.

Standard reporting
In the absence of an OLAP reporting solution, the most common option is to author standard
or ad-hoc reports that submit SELECT SQL statements directly to the OLTP database. These
SELECT queries are typically multi-join statements that link several relational tables together to

Figure 1.20 The SOS solution
will feature the real-time and
historical UDM layers.

SAMPLE

CHAPTER 1 30

fetch the report data. An example of a SQL SELECT statement that will produce a standard
report similar to the interactive report shown in Figure 1.1 is included in SQLQuery.sql file.
 There may be several potential issues with generating reports sourced directly from an
OLTP database. To start with, the report query may impact the performance of the OLTP
database. The query may take long a time to execute. On my machine (HP NW8000, 1.8 GHz
Pentium M single CPU, 2 GB RAM) the query in the SQLQuery.sql file takes about three
seconds to execute. Not that bad, you may say. Of course, we need to factor in the amount of
data processed. In our case, the SalesOrderDetail table in the sample AdventureWorks database
has 121,317 order line items. Now, imagine that the same query is fired against a much bigger
transactional or warehouse database. Assuming linear regression of performance, the same query
will take about 30 seconds to complete if we have ten times more records. I doubt that your
users will be willing to wait for that long!
 If you would like to empower your end users to generate their own reports in ad-hoc
fashion, they have to know quite a bit about the relational (ER) model and SQL. They have to
know which tables to join and they have to know how to join them. True, ad-hoc reporting tools
may abstract to a certain extent the technicalities of the relational model but they have issues of
their own. Finally, standard reports are not interactive. The user cannot drill down data, e.g.
double-click on a given year column to see data broken down by quarters.

Deploying the Unified Dimensional Model
Now, let’s see how OLAP and UDM change the reporting experience. We will use Excel
reporting capabilities to build a simple reporting solution with SSAS 2005 that will resemble the
report shown in Figure 1.1. The report will source its data from an SSAS 2005 cube. To build the
cube, we will use the AdventureWorks Analysis Services Project sample that comes with the
SQL Server 2005 samples. It includes a sample cube called Adventure Works. The Adventure
Works cube draws data from the Adventure Works warehouse database (AdventureWorksDW)
 If you have installed the SQL Server 2005 samples (see Appendix A), the project will be
located in C:\Program Files\Microsoft SQL Server\90\Tools\Samples\AdventureWorks
Analysis Services Project folder.

Note Both Standard and Enterprise versions of the project will do fine for our demo. Choose one based
on the SSAS version you are running.

Opening an Analysis Services project in BI Studio
If you haven’t deployed the sample AdventureWorks Analysis Services Project sample, follow
these steps:

1. Start SQL Server Business Intelligence Development Studio (found in the Microsoft SQL Server
2005 program group). Readers familiar with Visual Studio.NET will undoubtedly notice that the
Business Intelligence Development Studio IDE looks similar. As I’ve mentioned in section 1.1.4,
you will use BI Studio as a primary tool to design and maintain UDM.

2. From the File menu, choose Open, then Project/Solution… and Open the Adventure Works
solution (Adventure Works.sln). This solution includes a single project (Adventure Works
DW.dwproj). Don’t worry if the concepts of SSAS database and projects are not immediately
obvious. It will all become clear in Chapter 2. For the time being, note that the AdventureWorks
DW project includes the definitions of all objects in the Adventure Works UDM.

SAMPLE

INTRODUCING MICROSOFT ANALYSIS SERVICES 2005 31

3. If the Solution Explorer window is not shown, click on the Solution Explorer (View menu) or
press Ctrl-Alt-L. The Solution Explorer shows the SSAS objects defined in the Adventure Works
DW project in a tree view, as shown in Figure 1.21.

Double-click on the Adventure Works cube to open the Cube Designer. The Cube Designer
uses the same colors (blue for dimension tables and yellow for fact tables) as Analysis Manager
2000. Note that the dimension and fact tables are linked to each other, just like relational tables
are joined via referential integrity constraints. However, the big difference is that UDM enforces
these relationships at a metadata level. As a result, the end user doesn’t have to explicitly join
UDM objects. Instead, producing an OLAP report is as easy as dragging and dropping UDM
objects using your favorite OLAP client, which could be Microsoft Excel, as we will demonstrate
shortly.

4. In the Solution Explorer, expand the Cube node, right-click on the Adventure Works cube and
choose View Code. BI studio shows the definition of the cube described in Analysis Services
Scripting Language (ASSL). When you work in project mode (default), changes are persisted
locally.

Deploying projects

5. To propagate changes made in project mode, you need to deploy the project. Back to the
Solution Explorer, right-click on the Adventure Works DW project node (not to be confused
with the topmost solution node) and choose Properties. Expand the Configuration Properties and
click the Deployment node (Figure 1.22).

Figure 1.21 Use the Business Intelligence Studio to design SSAS objects.

SAMPLE

CHAPTER 1 32

6. Verify the server name (enter localhost to deploy to the local server).

7. Close the Property Pages window. If you haven’t deployed the Adventure Works DW project
yet, right-click on the project node and choose Deploy. BI Studio builds and deploys the project.
The end result of this process will be the creation of a new SSAS database called Adventure Works
DW.

8. To verify that the deployment process has completed successfully, open SQL Server Manage-
ment Studio (Microsoft SQL Server 2005 Program group).

9. In the Object Explorer pane, choose Connect Analysis Services to connect to the SSAS server
that you deployed the project to.

10. Expand the Databases folder and check that there is a database named Adventure Works DW.

11. Expand the Adventure Works DW folder and take some time to familiarize yourself with the
database content. For example, expand the Adventure Works cube, then the Measure Groups
measures and notice that there are eleven measure groups (with the Enterprise version).

Building OLAP Report
At this point, the SSAS database is built and its only cube has been processed. Let’s now use
Microsoft Excel as a reporting tool to browse the cube data. We will generate a report that shows
sales data broken by product and time, as shown in Figure 1.23.

1. Start Microsoft Excel 2003

2. Create a new PivotTable report by selecting PivotTable and PivotChart Report from the Data
menu.

3. In Step 1 of the PivotTable and PivotChart Report Wizard, select the “External data source”
option since you will be retrieving the data from an SSAS server. Click Next.

4. In Step 2, click on the Get Data button to configure Microsoft Query. In the Choose Data
Source dialog, click on the OLAP Cubes tab. Make sure the New Data Source item is selected.
Click OK.

Figure 1.22 To propagate changes
made in project mode, you need to
deploy the project to the SSAS server
specified in the Deployment Options
window.

SAMPLE

INTRODUCING MICROSOFT ANALYSIS SERVICES 2005 33

Figure 1.23 Use Microsoft Excel to create SSAS 2005 interactive reports.

5. In the Create New Data Source dialog, name the data source Adventure Works. In the “Select an
OLAP provider for the database you want to access” dropdown select Microsoft OLE DB
Provider for Analysis Services 9.0 (see Figure 1.24). Recall that Win32 clients must use version
9.0 of the OLE DB Provider for Analysis Services to connect to SSAS 2005.

6. Click the Connect button. On the MultiDimensional Connection dialog, select the Analysis Server
radio button, enter the machine name where SSAS 2005 is installed (Server field). Leave the
credentials fields blank to use Windows Authentication. Click Next. The Database listbox
appear. Select the Adventure Works DW database and click Finish. You are now taken back to the
Create New Data Source dialog.

7. Expand the last dropdown (Figure 1.24) and select the Adventure Works cube. Click OK to
close the Create New Data Source dialog and OK to close the Choose Data Source dialog. You are
back to the PivotTable and PivotChart Wizard. Click Next to advance to Step 3.

8. Accept the defaults in Step 3 and click Finish.

9. A blank pivot report appears in the Excel spreadsheet. A PivotTable Field List pane contains all
measures and dimensions defined in the Adventure Works cube.

Note At this point, you are probably confused by the sheer number of items shown in the PivotTable Field
List pane. Most of the items are attribute-based dimensions which are derived directly from columns in the
underlying dimension tables. For example, the Color dimension corresponds to the Color column in the
DimProduct dimension table. Unfortunately, Excel 2003 was released before SSAS 2005 and it is unaware
of the new features. Subsequently, the Field List is not capable of organizing the attribute hierarchies in
folders, as the Cube Browser does.

10. Scroll down the PivotTable Field List pane until you locate the Date.Calendar hierarchy. This
dimension represents a natural time hierarchy with Year, Semester, Quarter, Month and Date
levels. Drag the Date.Calendar hierarchy to the Drop Column Fields Here area of the pivot report.

11. Scroll further down the PivotTable Field List pane until you locate the Product Categories
dimension. This dimension represents a natural product hierarchy with Category, Subcategory,
and Product Name levels. Drag the Product Categories hierarchy to the Drop Row Fields Here area of
the pivot report.

SAMPLE

CHAPTER 1 34

12. Let’s now add some measures to the report. Scroll the PivotTable Field List pane all the way
down until you locate the Sales Amount measure. In the pane, measures have a different icon
(0110) than dimensions. Drag the Sales Amount measure to the Drop Data Items Here report area.
Do the same with the Order Count measure. Although the PivotTable Field lists doesn’t have a
special icon for MDX expressions, note that there are many calculated measures we can use in
the report, such as Reseller Ratio to All Products, Internet Gross Profit Margin, etc.

13. If you wish, you can spend some time to pretty up the report by changing format, font, and color
settings. At the end, your report may look like the one shown in Figure 1.23.

We are done! Feel free to experiment with the Excel PivotTable report. For example, double-
click on any member of the Product Categories dimension to drill down sales data to the product
subcategory and product name levels. Drag and drop other dimensions and measures. Once the
cube is designed and deployed, there are many ways to build interactive reports that provide the
needed level of business intelligence.

1.6 Summary
This chapter has been a whirlwind tour of the SSAS 2005 and OLAP technology. By now, you
should view SSAS 2005 as a sophisticated server-based platform that provides OLAP and data
mining services. Empowered with SSAS 2005, you can build intuitive and efficient BI applica-
tions. We’ve seen how SSAS 2005 fits into the Microsoft BI initiative. We’ve emphasized the
ambitious goal of SSAS 2005 to converge the relational and dimensional models into a single
Unified Dimensional Model.
 We’ve also looked at the high-level of the SSAS 2005 architecture and emphasized the fact
that XMLA is the native protocol of SSAS 2005. To help readers who have prior SSAS experi-
ence, I’ve provided a side-by-side comparison map between versions 2000 and 2005. Finally,
we’ve put into practice what we’ve learned by building an interactive Microsoft Excel PivotTable
report which sourced its data from SSAS 2005. Having laid the SSAS foundation, we are ready to
“drill down” the UDM layers. Let’s start by finding out how we can work with data.

Figure 1.24 Use the Microsoft OLE
DB Provider for Analysis Services
9.0 to connect to SSAS 2005.

SAMPLE

INTRODUCING MICROSOFT ANALYSIS SERVICES 2005 35

1.7 Resources
Microsoft SSAS home page

(http://shrinkster.com/895) – First stop for the latest on SSAS.

The OLAP Report website
(http://www.olapreport.com/) – The OLAP Report is an independent research re-
source for organizations buying and implementing OLAP applications.

SQL Server 2005 Features Comparison
(http://shrinkster.com/62q) – Compares side by side the editions of the SQL Server
2005 products.

SSAS and the competition
(http://www.olapreport.com/market.html) – Market share analysis of the top OLAP
vendors.

Microsoft Reporting Services in Action Book
(http://www.manning.com/lachev) – Following the report lifecycle, my book teaches
you the necessary skills to create, manage, and deliver SSRS reports.

XML for Analysis home page
(http://www.xmla.org/) – Visit to access the latest XML/A specification, FAQ, dis-
cussion forum, and samples.

